Pkd1l1 establishes left-right asymmetry and physically interacts with Pkd2.

نویسندگان

  • Sarah Field
  • Kerry-Lyn Riley
  • Daniel T Grimes
  • Helen Hilton
  • Michelle Simon
  • Nicola Powles-Glover
  • Pam Siggers
  • Debora Bogani
  • Andy Greenfield
  • Dominic P Norris
چکیده

In mammals, left-right (L-R) asymmetry is established by posteriorly oriented cilia driving a leftwards laminar flow in the embryonic node, thereby activating asymmetric gene expression. The two-cilia hypothesis argues that immotile cilia detect and respond to this flow through a Pkd2-mediated mechanism; a putative sensory partner protein has, however, remained unidentified. We have identified the Pkd1-related locus Pkd1l1 as a crucial component of L-R patterning in mouse. Systematic comparison of Pkd1l1 and Pkd2 point mutants reveals strong phenocopying, evidenced by both morphological and molecular markers of sidedness; both mutants fail to activate asymmetric gene expression at the node or in the lateral plate and exhibit right isomerism of the lungs. Node and cilia morphology were normal in mutants and cilia demonstrated typical motility, consistent with Pkd1l1 and Pkd2 activity downstream of nodal flow. Cell biological analysis reveals that Pkd1l1 and Pkd2 localise to the cilium and biochemical experiments demonstrate that they can physically interact. Together with co-expression in the node, these data argue that Pkd1l1 is the elusive Pkd2 binding partner required for L-R patterning and support the two-cilia hypothesis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pkd1l1 complexes with Pkd2 on motile cilia and functions to establish the left-right axis.

The internal organs of vertebrates show distinctive left-right asymmetry. Leftward extracellular fluid flow at the node (nodal flow), which is generated by the rotational movement of node cilia, is essential for left-right patterning in the mouse and other vertebrates. However, the identity of the pathways by which nodal flow is interpreted remains controversial as the molecular sensors of this...

متن کامل

Genetic Analysis Reveals a Hierarchy of Interactions between Polycystin-Encoding Genes and Genes Controlling Cilia Function during Left-Right Determination

During mammalian development, left-right (L-R) asymmetry is established by a cilia-driven leftward fluid flow within a midline embryonic cavity called the node. This 'nodal flow' is detected by peripherally-located crown cells that each assemble a primary cilium which contain the putative Ca2+ channel PKD2. The interaction of flow and crown cell cilia promotes left side-specific expression of N...

متن کامل

11-P002 Left–right asymmetry of ascidian larvae is determined by rotation of the whole embryos within the vitelline membrane

Specification of the mammalian left–right (L–R) axis is controlled by fluid flows in the embryonic node, a ciliated pit like structure located at the distal tip of the mouse embryo. Nodal cilia rotate so as to cause a leftward fluid flow-this has been experimentally demonstrated to control embryonic sidedness. How the embryo interprets this flow remains the subject of debate. The two cilia hypo...

متن کامل

Identification and Expression Analysis of the Complete Family of Zebrafish pkd Genes

Polycystic kidney disease (PKD) proteins are trans-membrane proteins that have crucial roles in many aspects of vertebrate development and physiology, including the development of many organs as well as left-right patterning and taste. They can be divided into structurally-distinct PKD1-like and PKD2-like proteins and usually one PKD1-like protein forms a heteromeric polycystin complex with a P...

متن کامل

11-P005 Fluorescence-based promoter gene trap screen during mouse pre-implantation development

Internal organs in vertebrates show distinctive left–right asymmetry. To establish left–right patterning, creation of a leftward flow plays a critical role. However, how this flow function or how this flow is sensed is still debated, because a flow sensor itself has not been identified yet. Here we show a medaka mutant abecobe (abc), isolated by our recent ENU-mediated mutagenesis screening wit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Development

دوره 138 6  شماره 

صفحات  -

تاریخ انتشار 2011